Uncertainty Quantification for Stochastic Nonlinear Systems using Perron-Frobenius Operator and Karhunen-Loève Expansion
نویسندگان
چکیده
In this paper, a methodology for propagation of uncertainty in stochastic nonlinear dynamical systems is investigated. The process noise is approximated using KarhunenLoève (KL) expansion. Perron-Frobenius (PF) operator is used to predict the evolution of uncertainty. A multivariate Kolmogorov-Smirnov test is used to verify the proposed framework. The method is applied to predict uncertainty evolution in a Duffing oscillator and a Vanderpol’s oscillator. It is observed that the solution of the approximated stochastic dynamics converges to the true solution in distribution. Finally, the proposed methodology is combined with Bayesian inference to estimate states of a nonlinear dynamical system, and its performance is compared with particle filter. The proposed estimator was found to be computationally superior than the particle filter.
منابع مشابه
Nonlinear estimation with Perron-Frobenius operator and Karhunen-Loève expansion
In this paper, a novel methodology for state estimation of stochastic dynamical systems is proposed. In this formulation, finite-term Karhunen-Loève (KL) expansion is used to approximate the process noise, thus resulting in a non-autonomous deterministic approximation (with parametric uncertainty) of the original stochastic nonlinear system. It is proved that the solutions of the approximate dy...
متن کاملPerformance Bounds for Dispersion Analysis: A Comparison Between Monte Carlo and Perron-Frobenius Operator Approach
We compare computational cost and accuracy between two different approaches of dispersion analysis. One is the conventional Monte Carlo method and the other being the Perron-Frobenius operator approach, that directly propagates the joint probability density function using Liouville equation. It is shown that with same computational budget, Perron-Frobenius operator approach rewards better accur...
متن کاملCompact weighted Frobenius-Perron operators and their spectra
In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.
متن کاملKarhunen-loève Approximation of Random Fields Using Hierarchical Matrix Techniques
In stochastic finite element computations for modelling uncertainty a popular approach for separating the deterministic and stochastic dependencies of a random field is to compute the first few terms of its Karhunen-Loève (KL) expansion. This entails approximating the dominant eigenpairs of its covariance operator, leading to a large dense eigenvalue problem, in particular since the operator ty...
متن کاملA brief note on the Karhunen-Loève expansion
We provide a detailed derivation of the Karhunen-Loève expansion of a stochastic process. We also discuss briefly Gaussian processes, and provide a simple numerical study for the purpose of illustration.
متن کامل